

SECTION NAME

Date : 04/03/2024 Time : 3 Hours 0 Minutes

2023_Previous Year Paper - 1 Marks : 300

Mathematics

1. The straight lines l_1 and l_2 pass through the origin and trisect the line segment of the line L : 9x + 5y = 45 between the axes. If m_1 and m_2 are the slopes of the lines l_1 and l_2 , then the point of intersection of the line $y = (m_1 + m_2)x$ with L lies on

A)
$$y-2x=5$$
 B) $6x+y=10$ **C)** $y-x=5$ **D)** $6x-y=15$

- 2. If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}:1$, then the third term from the beginning is:
 - A) $30\sqrt{2}$ B) $30\sqrt{3}$ C) $60\sqrt{2}$ D) $60\sqrt{3}$
- 3. The mean and variance of a set of 15 numbers are 12 and 14 respectively. The mean and variance of another set of 15 numbers are 14 and σ^2 respectively. If the variance of all the 30 numbers in the two sets is 13, then σ^2 is equal to
 - **A)** 10 **B)** 11 **C)** 9 **D)** 12
- 4. A pair of dice is thrown 5 times. For each throw, a total of 5 is considered a success. If the probability of at least 4 successes is $\frac{k}{3^{11}}$, then k is equal to
 - **A)** 82 **B)** 75 **C)** 164 **D)** 123
- 5. Let the position vectors of the points A, B, C and D be $5\hat{i} + 5j + 2\lambda\hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}, -2\hat{i} + \lambda\hat{j} + 4\hat{k} \text{ and } -\hat{i} + 5\hat{j} + 6\hat{k}$. Let the set $S = \{\lambda \in \mathbb{R} : \text{the points A, B, C and D are coplanar. The } \sum_{\lambda \in S} (\lambda + 2)^2 \text{ is equal to}$
 - A) 25 B) $\frac{37}{2}$ C) 13 D) 41
- 6. Let $I(x) = \int \frac{x^2(x \sec^2 + \tan x)}{(x \tan x + 1)^2} dx$. If I(0) = 0, then $I(\frac{\pi}{4})$ is equal to
 - A) $\log_e \frac{(\pi+4)^2}{16} + \frac{\pi^2}{4(\pi+4)}$ B) $\log_e \frac{(\pi+4)^2}{16} \frac{\pi^2}{4(\pi+4)}$ C) $\log_e \frac{(\pi+4)^2}{32} \frac{\pi^2}{4(\pi+4)}$

D)
$$\log_e \frac{(\pi+4)^2}{32} + \frac{\pi^2}{4(\pi+4)}$$

- 7. Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} 2\hat{j} 2\hat{k}$ and $\vec{c} = -\hat{i} + 4\hat{j} + 3\hat{k}$. If \vec{d} is a vector perpendicular to both \vec{b} and \vec{c} , and $\vec{a} \cdot \vec{d} = 18$, then $|\vec{a} \times \vec{d}|^2$ is equal to
 - **A)** 640 **B)** 680 **C)** 720 **D)** 760
- 8. Let $5f(x)+4f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x>0$. Then $18\int_1^2f(x)dx$ is equal to
 - A) $5\log_e 2 + 3$ B) $10\log_e 2 + 6$ C) $10\log_e 2 6$ D) $5\log_e 2 3$
- 9. Statement $(P \Rightarrow Q) \land (R \Rightarrow Q)$ is logically equivalent to

A)
$$(P \Rightarrow R) \lor (Q \Rightarrow R)$$
 B) $(P \lor R) \Rightarrow Q$ C) $(P \Rightarrow R) \land (Q \Rightarrow R)$ D) $(P \land R) \Rightarrow Q$

10. If the system of equations

$$x + y + az = b$$

$$2x + 5y + 2z = 6$$

$$x + 2y + 3z = 3$$

has infinitely many solutions, then 2a + 3b is equal to

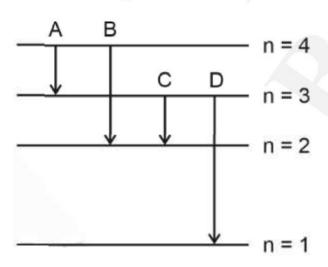
- A) 25 B) 20 C) 23 D) 28
- 11. From the top A of a vertical wall AB of height 30 m, the angles of depression of the top P and bottom Q of a vertical tower PQ are 15° and 60° respectively, B and Q are on the same horizontal level. If C is a point on AB such that CB = PQ, then the area (in m²) of the quadrilateral BCPQ is equal to
 - A) $300(\sqrt{3}-1)$ B) $300(\sqrt{3}+1)$ C) $600(\sqrt{3}-1)$ D) $200(\sqrt{3}-1)$
- 12. One vertex of a rectangular parallelopiped is at the origin O and the lengths of its edges along x, y and z axes are 3, 4 and 5 units respectively. Let P be the vertex (3, 4, 5). Then the shortest distance between the diagonal OP and an edge parallel to z axis, not passing through O or P is
 - A) $\frac{12}{\sqrt{5}}$ B) $12\sqrt{5}$ C) $\frac{12}{5\sqrt{5}}$ D) $\frac{12}{5}$
- 13. If ${}^{2n}C_3: {}^nC_3=10:1$, then the ratio $\left(n^2+3n\right): \left(n^2-3n+4\right)$. is
 - **A)** 35:16 **B)** 27:11 **C)** 65:37 **D)** 2:1
- 14. If the equation of the plane passing through the line of intersection of the planes 2x y + z = 3, 4x 3y + 5z + 9 = 0 and parallel to the line $\frac{z+1}{-2} = \frac{y+3}{4} = \frac{z-2}{5}$ is ax + by + cz + 6 = 0, then a + b + c is equal to

- **A)** 12 **B)** 14 **C)** 15 **D)** 13
- 15. The sum of the first 20 terms of the series $5 + 11 + 19 + 29 + 41 + \dots$ is
 - **A)** 3520 **B)** 3450 **C)** 3250 **D)** 3420
- 16. Let a_1 , a_2 , a_3 a_n be n positive consecutive terms of an arithmetic progression. If d > 0 is its common difference, then

$$\lim_{n\to\infty}\sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}\right)$$
 is

- **A)** $\frac{1}{\sqrt{d}}$ **B)** \sqrt{d} **C)** 1 **D)** 0
- 17. Let $\mathbf{A} = [\mathbf{a}_{ij}]_{2\times 2}$, where $\mathbf{a}_{ij} \neq 0$ for all i, j and $\mathbf{A}^2 = \mathbf{I}$. Let a be the sum of all diagonal elements of A and $\mathbf{b} = |\mathbf{A}|$. Then $3\mathbf{a}^2 + 4\mathbf{b}^2$ is equal to
 - **A)** 4 **B)** 14 **C)** 7 **D)** 3
- 18. The sum of all the roots of the equation $|x^2 8x + 15| 2x + 7 = 0$ is:
 - A) $9 \sqrt{3}$ B) $9 + \sqrt{3}$ C) $11 \sqrt{3}$ D) $11 + \sqrt{3}$
- 19. If $2x^y + 3y^x = 20$, then $\frac{dy}{dx}$ at (2, 2) is equal to:

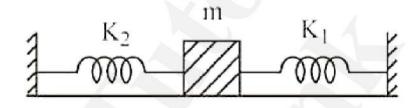
A)
$$-\left(\frac{2+\log_e 8}{3+\log_e 4}\right)$$
 B) $-\left(\frac{3+\log_e 16}{4+\log_e 8}\right)$ C) $-\left(\frac{3+\log_e 8}{2+\log_e 4}\right)$ D) $-\left(\frac{3+\log_e 4}{2+\log_e 8}\right)$


- 20. Let $A = \{x \in \mathbb{R} : [x+3] + [x+4] \le 3\}$,
 - $B = \left\{x \in \mathbb{R}: 3^x \left(\sum_{r=1}^\infty rac{3}{10^r}
 ight)^{x-3} < 3^{-3x}
 ight\}$, where [t] denotes greatest integer function. Then,
 - A) $B \subset C, A \neq B$ B) $A \cap B = \phi$ C) $A \subset B, A \neq B$ D) A = B
- ^{21.} The coefficient of x^{18} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$ is
- 22. Let $a \in \mathbb{Z}$ and [t] be the greatest integer \leq t. Then the number of points, where the function $f(x)=[a+13 \sin x]$, $x \in (0, \pi)$ is not differentiable, is
- 23. The number of ways of giving 20 distinct oranges to 3 children such that each child gets at least one orange is
- ^{24.} If the area of the region $S = \{(x,y): 2y y^2 \le x^2 \le 2y, x \ge y\}$ is equal to $\frac{n+2}{n+1} \frac{\pi}{n-1}$, then the natural number n is equal to
- 25. A circle passing through the point $P(\alpha, \beta)$ in the first quadrant touches the two coordinate axes at the points A and B. The point P is above the line AB. The point Q on the line segment AB is the foot of

perpendicular from P on AB. If PQ is equal to 11 units, then the value of $\alpha\beta$ is

- 26. Let the image of the point P(1, 2, 3) in the plane 2x y + z = 9 be Q. If the coordinates of the point R are (6, 10, 7), then the square of the area of the triangle PQR is
- 27. Let y=y(x) be a solution of the differential equation $(x \cos x) dy + (xy \sin x + y \cos x 1) dx = 0$, $0 < x < \frac{\pi}{2}$. If $\frac{\pi}{3}y\left(\frac{\pi}{3}\right) = \sqrt{3}$, then $\left|\frac{\pi}{6}y''\left(\frac{\pi}{6}\right) + 2y'\left(\frac{\pi}{6}\right)\right|$ is equal to
- 28. Let A = $\{1, 2, 3, 4, \dots 10\}$ and B = $\{0, 1, 2, 3, 4\}$. The number of elements in the relation $R = \{(a, b) \in A \times A : 2(a b)^2 + 3(a b) \in B\}$ is
- 29. Let the tangent to the curve $x^2 + 2x 4y + 9 = 0$ at the point P(1, 3) on it meet the y-axis at A. Let the line passing through P and parallel to the line x 3y = 6 meet the parabola $y^2 = 4x$ at B. If B lies on the line 2x 3y = 8, then $(AB)^2$ is equal to
- ^{30.} Let the point (p, p + 1) lie inside the region $E = \{(x, y) : 3 x \le y \le \sqrt{9 x^2}, 0 \le x \le 3\}$. If the set of all values of p is the interval (a, b), then $b^2 + b a^2$ is equal to

Physics


- 31. A particle is moving with constant speed in a circular path. When the particle turns by an angle 90°, the ratio of instantaneous velocity to its average velocity is $\pi : x\sqrt{2}$. The value of x will be
 - **A)** 2 **B)** 5 **C)** 1 **D)** 7
- 32. A source supplies heat to a system at the rate of 1000 W. If the system performs work at a rate of 200 W. The rate at which internal energy of the system increases is
 - A) 600 W B) 800 W C) 500 W D) 1200 W
- 33. The number of air molecules per cm³ increased from 3×10^{19} to 12×10^{19} . The ratio of collision frequency of air molecules before and after the increase in number respectively is:
 - **A)** 0.75 **B)** 1.25 **C)** 0.50 **D)** 0.25
- 34. The energy levels of an hydrogen atom are shown below. The transition corresponding to emission of shortest wavelength is

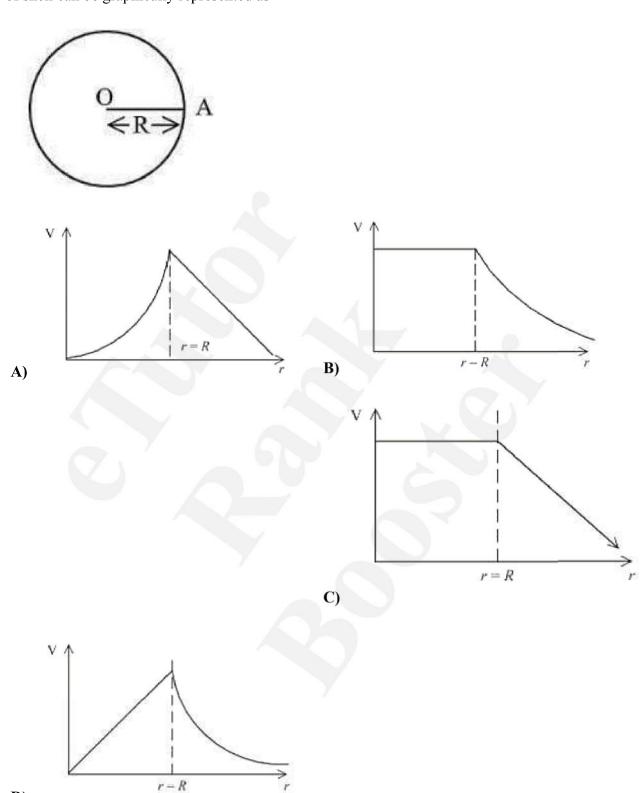
- **A)** D **B)** A **C)** B **D)** C
- 35. The induced emf can be produced in a coil by
 - A. moving the coil with uniform speed inside uniform magnetic field
 - B. moving the coil with non uniform speed inside uniform magnetic field
 - C. rotating the coil inside the uniform magnetic field
 - D. changing the area of the coil inside the uniform magnetic field

Choose the correct answer from the options given below:

- A) B and C only B) A and C only C) C and D only D) B and D only
- 36. A mass m is attached to two strings as shown in figure. The spring constants of two springs are K₁ and K₂. For the frictionless surface, the time period of oscillation of mass m is

A)
$$2\pi\sqrt{\frac{m}{K_1+K_2}}$$
 B) $\frac{1}{2\pi}\sqrt{\frac{K_1-K_2}{m}}$ C) $2\pi\sqrt{\frac{m}{K_1-K_2}}$ D) $\frac{1}{2\pi}\sqrt{\frac{K_1+K_2}{m}}$

37. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.


Assertion A: When a body is projected at an angle 45°, it's range is maximum.

Reason R: For maximum range, the value of $\sin 2\theta$ should be equal to one.

In the light of the above statements, choose the **correct** answer from the options given below:

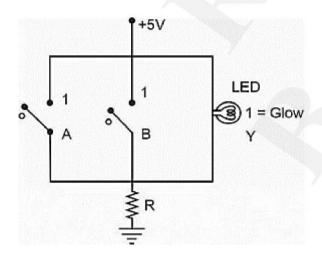
- A) A is false but R is true B) A is true but R is false
- C) Both A and R are correct and R is the correct explanation of A
- **D)** Both A and R are correct but R is NOT the correct explanation of A
- 38. A small block of mass 100 g is tied to a spring of spring constant 7.5 N/m and length 20 cm. The other end of spring is fixed at a particular point A. If the block moves in a circular path on a smooth horizontal surface with constant angular velocity 5 rad/s about point A, then tension in the spring is

- **A)** 0.75 N **B)** 0.25 N **C)** 0.50 N **D)** 1.5 N
- 39. For a uniformly charged thin spherical shell, the electric potential (V) radially away from the centre (O) of shell can be graphically represented as

D)

40. Two resistance are given as $R_1 = (10 \pm 0.5) \Omega$ and $R_2 = (15 \pm 0.5) \Omega$. The percentage error in the measurement of equivalent resistance when they are connected in parallel is

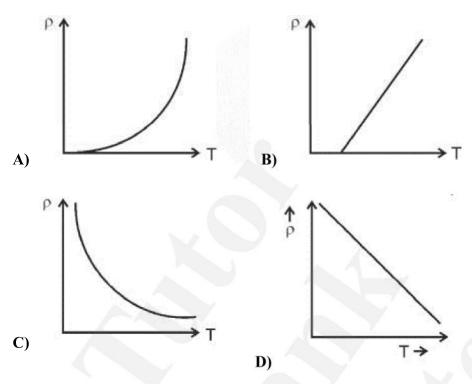
- **A)** 6.33 **B)** 2.33 **C)** 5.33 **D)** 4.33
- 41. A planet has double the mass of the earth. Its average density is equal to that of the earth. An object weighing W on earth will weigh on that planet:
 - **A)** W **B)** $2^{1/3}$ W **C)** 2 W **D)** $2^{2/3}$ W
- 42. A monochromatic light wave with wavelength λ_1 and frequency ν_1 in air enters another medium. If the angle of incidence and angle of refraction at the interface are 45° and 30° respectively, then the wavelength λ_2 and frequency ν_2 of the refracted wave are:


A)
$$\lambda_2 = \sqrt{2}\lambda_1, v_2 = v_1$$
 B) $\lambda_2 = \lambda_1, v_2 = \frac{1}{\sqrt{2}}v_1$ C) $\lambda_2 = \lambda_1, v_2 = \sqrt{2}v_1$

D)
$$\lambda_2=rac{1}{\sqrt{2}}\lambda_1,v_2=v_1$$

43. A small ball of mass M and density ρ is dropped in a viscous liquid of density ρ_0 . After some time, the ball falls with a constant velocity. What is the viscous force on the ball?

A)
$$F = Mg\left(1 + \frac{\rho_0}{\rho}\right)$$
 B) $F = Mg\left(1 + \frac{\rho}{\rho_0}\right)$ C) $F = Mg\left(1 - \frac{\rho_0}{\rho}\right)$ D) $F = Mg\left(1 \pm \rho\rho_0\right)$


- 44. By what percentage will the transmission range of a TV tower be affected when the height of the tower is increased by 21%?
 - **A)** 15% **B)** 12% **C)** 10% **D)** 14%
- 45. Name the logic gate equivalent to the diagram attached

A) NAND B) AND C) NOR D) OR

46. For the plane electromagnetic wave given by $E = E_0 \sin(\omega t - kx)$ and $B = B_0 \sin(\omega t - kx)$, the ratio of average electric energy density to average magnetic energy density is

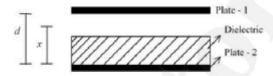
47. The resistivity (ρ) of semiconductor varies with temperature. Which of the following curve represents the correct behaviour?

- 48. A long straight wire of circular cross-section (radius a) is carrying steady current I. The current I is uniformly distributed across this cross-section. The magnetic field is
 - A) inversely proportional to r in the region r < a and uniform throughout in the region r > a
 - B) directly proportional to r in the region r < a and inversely proportional to r in the region r > a
 - C) zero in the region r < a and inversely proportional to r in the region r > a
 - D)

uniform in the region r < a and inversely proportional to distance r from the axis, in the region r > a

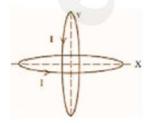
49. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: Earth has atmosphere whereas moon doesn't have any atmosphere.


Reason R: The escape velocity on moon is very small as compared to that on earth.

In the light of the above statements, choose the correct answer from the options given below:

- A) Both A and R are correct but R is NOT the correct explanation of A B) A is false but R is true
- C) Both A and R are correct and R is the correct explanation of A D) A is true but R is false
- 50. The kinetic energy of an electron, α -particle and a proton are given as 4K, 2K and K respectively. The de-Broglie wavelength associated with electron (λe), α -particle ($\lambda \alpha$) and the proton (λp) are as follows:


A)
$$\lambda \alpha = \lambda p > \lambda e$$
 B) $\lambda \alpha < \lambda p < \lambda e$ C) $\lambda \alpha = \lambda p < \lambda e$ D) $\lambda \alpha > \lambda p > \lambda e$

- ⁵¹. The radius of fifth orbit of Li⁺⁺ is ____ \times 10⁻¹² m. Take: radius of hydrogen atom = 0.51 Å
- 52. A parallel plate capacitor with plate area A and plate separation d is filled with a dielectric material of dielectric constant K = 4. The thickness of the dielectric material is x, where x < d.

Let C_1 and C_2 be the capacitance of the system for $x = \frac{1}{3}d$ and $x = \frac{2d}{3}$, respectively. If $C_1 = 2\mu F$ the value of C_2 is μF .

- 53. A particle of mass 10 g moves in a straight line with retardation 2x, where x is the displacement in SI units. Its loss of kinetic energy for above displacement is $\left(\frac{10}{x}\right)^{-n}$ J. The value of n will be
- 54. Two identical circular wires of radius 20 cm and carrying current $\sqrt{2}$ A are placed in perpendicular planes as shown in figure. The net magnetic field at the centre of the circular wires is $\times 10^{-8}$ T.

(Take $\pi = 3.14$)

55. A person driving car at a constant speed of 15m/s is approaching a vertical wall. The person notices a change of 40 Hz in the frequency of his car's horn upon reflection from the wall. The frequency of hom is _____ Hz.

(Given: Speed of sound: 30 m/s)

56. A pole is vertically submerged in swimming pool, such that it gives a length of shadow 2.15 m within water when sunlight is incident at an angle of 30° with the surface of water. If swimming pool is filled to a height of 1.5 m, then the height of the pole above the water surface in centimeters is $(n_w = 4/3)$

57. A steel rod has a radius of 20 mm and a length of 2.0 m. A force of 62.8 kN stretches it along its length. Young's modulus of steel is 2.0×10^{11} N/m ² . The longitudinal strain produced in the wire is × 10^{-5}				
58. An ideal transformer with purely resistive load operates at 12 kV on the primary side. It supplies electrical energy to a number of nearby houses at 120 V. The average rate of energy consumption in the houses served by the transformer is 60 kW. The value of resistive load (Rs) required in the secondary circuit will bem Ω .				
59. The length of a metallic wire is increased by 20% and its area of cross section is reduced by 4%. The percentage change in resistance of the metallic wire is				
60. Two identical solid spheres each of mass 2 kg and radii 10 cm are fixed at the ends of a light rod. The separation between the centres of the spheres is 40 cm. The moment of inertia of the system about an axis perpendicular to the rod passing through its middle point is $____ \times 10^{-3}$ kg-m ² .				
Chemistry				
61. Which of the following options are correct for the reaction?				
$2[\mathrm{Au}(\mathrm{CN})_2]^-(\mathrm{aq}) + \mathrm{Zn}(\mathrm{s}) o 2\mathrm{Au}(\mathrm{s}) + \left[\mathrm{Zn}(\mathrm{CN})_4 ight]^{2-}(aq)$				
A. Redox reaction				
B. Displacement reaction				
C. Decomposition reaction				
D. Combination reaction				
Choose the correct answer from the options given below:				
A) A only B) A and D only C) A and B only D) C and D only				
62. The setting time of Cement is increased by adding				
A) Clay B) Silica C) Gypsum D) Limestone				
63. A compound is formed by two elements X and Y. The element Y forms cubic close packed arrangement and those of element X occupy one third of the tetrahedral voids. What is the formula of the compound?				
A) X_2Y_3 B) X_3Y_2 C) X_3Y D) XY_3				
64. The standard electrode potential of M ⁺ /M in aqueous solution does not depend on				
A) Hydration of a gaseous metal ion B) Sublimation of a solid metal				
C) lonisation of a solid metal atom D) lonisation of a gaseous metal atom				
65. Match List I and List II				

LIST I Vitamin	LIST II Deficiency disease		
A. Vitamin A	I. Beri-Beri		
B. Thiamine	II. Cheilosis		
C. Ascorbic acid	III. Xerophthalmia		
D. Riboflavin	IV. Scurvy		

Choose the correct answer from the options given below

- A) A-III, B-I, C-IV, D-II B) A-IV, B-I, C-III, D-II C) A-IV, B-II, C-III, D-I
- **D)** A-III, B-II, C-IV, D-I
- 66. The difference between electron gain enthalpies will be maximum between:
 - A) Ne and F B) Ar and F C) Ne and Cl D) Ar and Cl
- 67. The possibility of photochemical smog formation is more at
 - A) Marshy lands B) Industrial areas C) Himalayan villages in winter
 - **D)** The places with healthy vegetation
- 68. Match List I with List II

LIS Oxi		LIST II Type of bond		
A.	N ₂ O ₄	I.	1 N = O bond	
B.	NO ₂	II.	1 N – O –N bond	
C.	N ₂ O ₅	III.	1 N – N bond	
D.	N ₂ O	IV.	$1 N = N/N \equiv N \text{ bond}$	

Choose the correct answer from the options given below:

- A) A-III, B-I, C-II, D-IV B) A-II, B-IV, C-III, D-I C) A-III, B-I, C-IV, D-II
- **D)** A-II, B-I, C-III, D-IV
- 69. Strong reducing and oxidizing agents among the following, respectively, are
 - **A)** Ce^{3+} and Ce^{4+} **B)** Ce^{4+} and Tb^{4+} **C)** Ce^{4+} and Eu^{2+} **D)** Eu^{2+} and Ce^{4+}
- 70. The major product formed in the following reaction is

CONH₂
$$\xrightarrow{Br_2/NaOH}$$
COOCH₃

Br₂/NaOH
A

COOCH₃

Br₂/NaOH
A

COOCH₃

COOC

71. For the reaction

$$ext{RCH}_2 ext{Br} + ext{I}^- \underbrace{ ext{Acetone}}_{ ext{major}} ext{RCH}_2 ext{l} + ext{Br}^-$$

The correct statement is

- A) Br can act as competing nucleophile. B) The reaction can occur in acetic acid also.
- C) The transition state formed in the above reaction is less polar than the localised anion.
- D) The solvent used in the reaction solvates the ions formed in rate determining step
- 72. Polymer used in orlon is:

A) Polyethene B) Polycarbonate C) Polyamide D) Polyacrylonitrile

Compound P
$$\xrightarrow{\text{HCI}, \Delta}$$
 Filter $\xrightarrow{\text{Filtrate}}$ Residue Q $\xrightarrow{\text{Filtrate}}$ $\xrightarrow{\text{Filtrate}}$ $\xrightarrow{\text{NaOH}}$ $\xrightarrow{\text{NaOH}}$ Oily Liquid R.

Compound P is neutral, Q gives effervescence with NaHCO₃ while R reacts with Hinsberg's reagent to give solid soluble in NaOH. Compound P is

74. Match List I with List II

LIST I Enzymatic reaction	LIST II Enzyme		
A. Sucrose → Glucose and Fructose	I.	Zymase	
B. Glucose \rightarrow ethyl alcohol and CO_2	II.	Pepsin	
C. Starch → Maltose	III.	Invertase	
D. Proteins → Amino acids	IV.	IV. Diastase	

Choose the correct answer from the options given below.

A) A-I, B-II, C-IV, D-III B) A-III, B-I, C-IV, D-II C) A-III, B-I, C-II, D-IV

- **D)** A-I, B-IV, C-III, D-II
- 75. For a concentrated solution of a weak electrolyte (K_{eq} = equilibrium constant) A_2B_3 of concentration 'c', the degree of dissociation ' α ' is

A)
$$\left(\frac{K_{\text{eq}}}{5c^4}\right)^{\frac{1}{5}}$$
 B) $\left(\frac{K_{\text{eq}}}{108c^4}\right)^{\frac{1}{5}}$ C) $\left(\frac{K_{\text{eq}}}{25c^2}\right)^{\frac{1}{5}}$ D) $\left(\frac{K_{\text{eq}}}{6c^5}\right)^{\frac{1}{5}}$

76. Match List-II with List-II.

LIST I Element detected		LIST II Reagent used/Product formed		
A.	Nitrogen	I.	Na ₂ [Fe(CN) ₅ NO]	
B.	Sulphur	II.	AgNO ₃	
C.	Phosphorus	III.	Fe ₄ [Fe(CN) ₆] ₃	
D.	Halogen	IV.	$(NH_4)_2MoO_4$	

Choose the correct answer from the options given below:

A)
$$A \rightarrow III; B \rightarrow I; C \rightarrow IV; D \rightarrow II$$
 B) $A \rightarrow II; B \rightarrow IV; C \rightarrow I; D \rightarrow III$

C)
$$A \rightarrow IV; B \rightarrow II; C \rightarrow I; D \rightarrow III$$
 D) $A \rightarrow II; B \rightarrow I; C \rightarrow IV; D \rightarrow III$

77. Given below are two statements, one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: The spin only magnetic moment value for $[Fe(CN)_6]^{3-}$ is 1.74 BM, whereas for $[Fe(H_2O)_6]^{3+}$ is 5.92 BM.

Reason B: In both complexes, Fe is present in +3 oxidation state.

In the light of the above statements, choose the correct answer from the options given below.

- A) A is false but R is true B) A is true but R is false
- C) Both A and R are true but R is NOT the correct explanation of A
- **D)** Both A and R are true and R is the correct explanation of A
- 78. Match List-I with List-II.

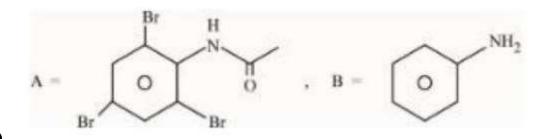
		LIST-II Reagent used	
A. Hell-Volhard-Zelinsky reaction	I.	NaOH + I ₂	

B.	Iodoform reaction	II.	(i) CrO ₂ Cl ₂ , CS ₂ (ii) H ₂ O
C.	Etard reaction	III.	(i) Br ₂ /red phosphorus (ii) H ₂ O
D.	Gatterman-Koch reaction	IV.	CO, HCl, anhyd. AlCl ₃

Choose the correct answer from the options given below:

A)
$$A \rightarrow III; B \rightarrow I; C \rightarrow II; D \rightarrow IV$$
 B) $A \rightarrow I; B \rightarrow II; C \rightarrow III; D \rightarrow IV$

C)
$$A \rightarrow III; B \rightarrow II; C \rightarrow I; D \rightarrow IV$$
 D) $A \rightarrow III; B \rightarrow I; C \rightarrow IV; D \rightarrow II$


79. Given below are two statements, one is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: Loss of electron from hydrogen atom results in nucleus of $\sim 1.5 \times 10^{-3}$ pm size.

Reason R: Proton (H⁺) always exists in combined form.

In the light of the above statements, choose the most appropriate answer from the options given below:

- A) Both A and R are correct and R is the correct explanation of A
- B) A is correct but R is not correct C) A is not correct but R is correct
- D) Both A and R are correct but R is NOT the correct explanation of A
- 80. The major products A and B from the following reactions are:

B)

C)

$$A = \begin{array}{c|c} Br & H \\ \hline \\ N \\ \hline \\ Br \\ \end{array} \begin{array}{c} H \\ N \\ \hline \\ OH \\ \end{array}$$

D)

81. Mass of Urea (NH₂CONHN₂) required to be dissolved in 1000 g of water in order to reduce the vapour pressure of water by 25 % is g. (Nearest integer)

Given: Molar mass of N, C, O and H are 14, 12, 16 and 1 g mol⁻¹ respectively.

82. The value of log K for the reaction $A \rightleftharpoons B$ at 298 K is . (Nearest integer)

Given : $\Delta H^{\circ} = -54.07 \text{ kJ mol}^{-1}$

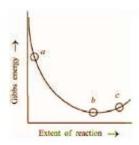
 $\Delta S^{\circ} = 10 \text{ JK}^{-1} \text{ mol}^{-1}$

 $(Take 2.303 \times 8.314 \times 298 = 5705)$

- 83. In ammonium phosphomolybdate, the oxidation state of Mo is +
- 84. Number of bromo derivatives obtained on treating ethane with excess of Br2 in diffused sunlight is
- 85. For the adsorption of hydrogen on platinum, the activation energy is 30 kJ mol⁻¹ and for the adsorption of hydrogen on nickel, the activation energy is 41.4 kJ mol⁻¹. The logarithm of the ratio of the rates of chemisorption on equal areas of the metals at 300 K is (Nearest integer) Given: ln 10 = 2.3

 $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$

86. The number of species from the following which have square pyramidal structure is


 $PF_5, BrF_4^-, IF_5, BrF_5, XeOF_4, ICl_4^{-4}$

87. If 5 moles of BaCl₂ is mixed with 2 moles of Na₃ PO₄, the maximum number of moles of Ba₃(PO₄)₂ formed is (Nearest integer)

88. Number of ambidentate ligands in a representative metal complex [M(en)(SCN)₄] is

en = ethylenediamine]

- 89. The wavelength of an electron of kinetic energy 4.50×10^{-29} J is _____ $\times 10^{-5}$ m. (Nearest integer) Given: mass of electron is 9×10^{-31} kg, $h = 6.6 \times 10^{-34}$ Js
- 90. Consider the graph of Gibbs free energy G vs extent of reaction. The number of statement/s from the following which are true with respect to points (a), (b) and (c) is

- A. Reaction is spontaneous at (a) and (b)
- B. Reaction is at equilibrium at point (b) and nonspontaneous at point (c)
- C. Reaction is spontaneous at (a) and nonspontaneous at (c)
- D. Reaction is non-spontaneous at (a) and (b)

Print